If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-11=53
We move all terms to the left:
2x^2-11-(53)=0
We add all the numbers together, and all the variables
2x^2-64=0
a = 2; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·2·(-64)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*2}=\frac{0-16\sqrt{2}}{4} =-\frac{16\sqrt{2}}{4} =-4\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*2}=\frac{0+16\sqrt{2}}{4} =\frac{16\sqrt{2}}{4} =4\sqrt{2} $
| 2x-1x=x-1 | | h/8+4=64 | | x²-3=95 | | m^2+2m-8m=0 | | 10c+44=8c+38 | | 2x/5=9/16 | | 7+3/4x=x | | (-4x)-(-12)+(-3x)=33 | | n+7.1=-8.6 | | 10=z-+6 | | 7x□=84 | | (16x+23)^=1080 | | 9÷w=2.5 | | X^2+2x=181.25 | | 32+12m=140 | | -11x-16=115 | | -79=-(3x+3)-7(6x-2) | | 8b=48;b=7 | | x2+4x+2x=x2+x | | 3(w+8)-7w=28 | | x–9=61 | | x–9=61 | | x-5.4=5.7 | | 12=r÷6 | | R=9+3s. | | x^2-10x-6=19 | | 95=19y | | 56-4K=-5k-3k | | 35x-18=87 | | 2x+20=2x-5=x+10 | | 6x+13=62 | | 10.4=16.5d |